featured.png

In the previous post, we discussed how to develop a data pipeline from Apache Kafka into OpenSearch locally using Docker. The pipeline will be deployed on AWS using Amazon MSK, Amazon MSK Connect and Amazon OpenSearch Service using Terraform in this post. First the infrastructure will be deployed that covers a VPC, VPN server, MSK Cluster and OpenSearch domain. Then Kafka source and sink connectors will be deployed on MSK Connect, followed by performing quick data analysis.

featured.png

Kafka Connect can be an effective tool to ingest data from Apache Kafka into OpenSearch. In this post, we will discuss how to develop a data pipeline from Apache Kafka into OpenSearch locally using Docker while the pipeline will be deployed on AWS in the next post. Fake impressions and clicks data will be pushed into Kafka topics using a Kafka source connector and those records will be ingested into OpenSearch indexes using a sink connector for near-real time analytics.

featured.png

In the previous posts, we discussed how to implement client authentication by TLS (SSL or TLS/SSL) and SASL authentication. One of the key benefits of client authentication is achieving user access control. In this post, we will discuss how to configure Kafka authorization with Java and Python client examples while SASL is kept for client authentication.

featured.png

In the previous post, we discussed TLS (SSL or TLS/SSL) authentication to improve security. It enforces two-way verification where a client certificate is verified by Kafka brokers. Client authentication can also be enabled by Simple Authentication and Security Layer (SASL), and we will discuss how to implement SASL authentication with Java and Python client examples in this post.

featured.png

To improve security, we can extend TLS (SSL or TLS/SSL) encryption either by enforcing two-way verification where a client certificate is verified by Kafka brokers (SSL authentication). Or we can choose a separate authentication mechanism, which is typically Simple Authentication and Security Layer (SASL). In this post, we will discuss how to implement SSL authentication with Java and Python client examples while SASL authentication is covered in the next post.

featured.png

As part of investigating how to utilize Kafka Connect effectively for AWS services integration, I demonstrated how to develop the Camel DynamoDB sink connector using Docker in Part 2. Fake order data was generated using the MSK Data Generator source connector, and the sink connector was configured to consume the topic messages to ingest them into a DynamoDB table. In this post, I will illustrate how to deploy the data ingestion applications using Amazon MSK and MSK Connect.

featured.png

We can configure Kafka clients and other components to use TLS (SSL or TLS/SSL) encryption to secure communication. It is a one-way verification process where a server certificate is verified by a client via SSL Handshake. Moreover we can improve security by adding client authentication. In this post, we will discuss how to configure SSL encryption with Java and Python client examples while client authentication will be covered in later posts.

featured.png

In Part 4, we developed Kafka producer and consumer applications using the kafka-python package without integrating schema registry. Later we discussed the benefits of schema registry when developing Kafka applications in Part 5. In this post, I'll demonstrate how to enhance the existing applications by integrating AWS Glue Schema Registry.

featured.png

In Part 3, we developed a data ingestion pipeline using Kafka Connect source and sink connectors without enabling schemas. Later we discussed the benefits of schema registry when developing Kafka applications in Part 5. In this post, I'll demonstrate how to enhance the existing data ingestion pipeline by integrating AWS Glue Schema Registry.

featured.png

The Glue Schema Registry supports features to manage and enforce schemas on data streaming applications using convenient integrations with Apache Kafka and other AWS managed services. In order to utilise those features, we need to use the client library. In this post, I'll illustrate how to build the client library after introducing how it works to integrate the Glue Schema Registry with Kafka producer and consumer apps.