featured.png

In Part 5, we developed a dbt project that that targets Apache Iceberg where transformations are performed on Amazon Athena. Two dimension tables that keep product and user records are created as Type 2 slowly changing dimension (SCD Type 2) tables, and one transactional fact table is built to keep pizza orders. To improve query performance, the fact table is denormalized to pre-join records from the dimension tables using the array and struct data types. In this post, we discuss how to set up an ETL process on the project using Apache Airflow.

featured.png

In Part 1 and Part 3, we developed data build tool (dbt) projects that target PostgreSQL and BigQuery using fictional pizza shop data. The data is modelled by SCD type 2 dimension tables and one transactional fact table. While the order records should be joined with dimension tables to get complete details for PostgreSQL, the fact table is denormalized using nested and repeated fields to improve query performance for BigQuery. Open Table Formats such as Apache Iceberg bring a new opportunity that implements data warehousing features in a data lake (i.e. data lakehouse) and Amazon Athena is probably the easiest way to perform such tasks on AWS. In this post, we create a new dbt project that targets Apache Iceberg where transformations are performed on Amazon Athena. Data modelling is similar to the BigQuery project where the dimension tables are modelled by the SCD type 2 approach and the fact table is denormalized using the array and struct data types.

featured.png

Streaming ingestion from Kafka (MSK) into Redshift and Athena can be much simpler as they now support direct integration. In part 2, we discuss an end-to-end streaming ingestion solution using EventBridge, Lambda, MSK and Athena. We also use AWS SAM integrated with Terraform for developing the producer Lambda function locally.

featured.png

The data build tool (dbt) is an effective data transformation tool and it supports key AWS analytics services - Redshift, Glue, EMR and Athena. In the last part of the dbt on AWS series, we discuss data transformation pipelines using dbt on Amazon Athena. Subsets of IMDb data are used as source and data models are developed in multiple layers according to the dbt best practices.