featured.png

In this post, we develop an Apache Beam pipeline using the Python SDK and deploy it on an Apache Flink cluster via the Apache Flink Runner. Same as Part I, we deploy a Kafka cluster using the Strimzi Operator on a minikube cluster as the pipeline uses Apache Kafka topics for its data source and sink. Then, we develop the pipeline as a Python package and add the package to a custom Docker image so that Python user code can be executed externally. For deployment, we create a Flink session cluster via the Flink Kubernetes Operator, and deploy the pipeline using a Kubernetes job. Finally, we check the output of the application by sending messages to the input Kafka topic using a Python producer application.

featured.png

Flink Kubernetes Operator acts as a control plane to manage the complete deployment lifecycle of Apache Flink applications. With the operator, we can simplify deployment and management of Python stream processing applications. In this series, we discuss how to deploy a PyFlink application and Python Apache Beam pipeline on the Flink Runner on Kubernetes. In Part 1, we first deploy a Kafka cluster on a minikube cluster as the source and sink of the PyFlink application are Kafka topics. Then, the application source is packaged in a custom Docker image and deployed on the minikube cluster using the Flink Kubernetes Operator. Finally, the output of the application is checked by sending messages to the input Kafka topic using a Python producer application.

featured.png

We developed batch and streaming pipelines in Part 2 and Part 4. Often it is faster and simpler to identify and fix bugs on the pipeline code by performing local unit testing. Moreover, especially when it comes to creating a streaming pipeline, unit testing cases can facilitate development further by using TestStream as it allows us to advance watermarks or processing time according to different scenarios. In this post, we discuss how to perform unit testing of the batch and streaming pipelines that we developed earlier.

featured.png

In Part 3, we discussed the portability layer of Apache Beam as it helps understand (1) how Python pipelines run on the Flink Runner and (2) how multiple SDKs can be used in a single pipeline, followed by demonstrating local Flink and Kafka cluster creation for developing streaming pipelines. In this post, we develop a streaming pipeline that aggregates page visits by user in a fixed time window of 20 seconds. Two versions of the pipeline are created with/without relying on Beam SQL.

featured.png

Beam pipelines are portable between batch and streaming semantics but not every Runner is equally capable. The Apache Flink Runner supports Python, and it has good features that allow us to develop streaming pipelines effectively. We first discuss the portability layer of Apache Beam as it helps understand (1) how a pipeline developed by the Python SDK can be executed in the Flink Runner that only understands Java JAR and (2) how multiple SDKs can be used in a single pipeline. Then we move on to how to manage local Flink and Kafka clusters using bash scripts. Finally, we end up illustrating a simple streaming pipeline, which reads and writes website visit logs from and to Kafka topics.

featured.png

In this series, we discuss local development of Apache Beam pipelines using Python. A basic Beam pipeline was introduced in Part 1, followed by demonstrating how to utilise Jupyter notebooks, Beam SQL and Beam DataFrames. In this post, we discuss Batch pipelines that aggregate website visit log by user and time. The pipelines are developed with and without Beam SQL. Additionally, each pipeline is implemented on a Jupyter notebook for demonstration.

featured.png

Apache Beam and Apache Flink are open-source frameworks for parallel, distributed data processing at scale. Flink has DataStream and Table/SQL APIs and the former has more capacity to develop sophisticated data streaming applications. The DataStream API of PyFlink, Flink’s Python API, however, is not as complete as its Java counterpart, and it doesn’t provide enough capability to extend when there are missing features in Python. On the other hand, Apache Beam supports more possibility to extend and/or customise its features. In this series of posts, we discuss local development of Apache Beam pipelines using Python. In Part 1, a basic Beam pipeline is introduced, followed by demonstrating how to utilise Jupyter notebooks for interactive development. It also covers Beam SQL and Beam DataFrames examples on notebooks. In subsequent posts, we will discuss batch and streaming pipeline development and concludes with illustrating unit testing of existing pipelines.

featured.png

Apache Flink became generally available for Amazon EMR on EKS from the EMR 6.15.0 releases. As it is integrated with the Glue Data Catalog, it can be particularly useful if we develop real time data ingestion/processing via Flink and build analytical queries using Spark (or any other tools or services that can access to the Glue Data Catalog). In this post, we will discuss how to set up a local development environment for Apache Flink and Spark using the EMR container images. After illustrating the environment setup, we will discuss a solution where data ingestion/processing is performed in real time using Apache Flink and the processed data is consumed by Apache Spark for analysis.

featured.png

The value of data can be maximised when it is used without delay. With Apache Flink, we can build streaming analytics applications that incorporate the latest events with low latency. In this lab, we will create a Pyflink application that writes accumulated taxi rides data into an OpenSearch cluster. It aggregates the number of trips/passengers and trip durations by vendor ID for a window of 5 seconds. The data is then used to create a chart that monitors the status of taxi rides in the OpenSearch Dashboard.

featured.png

In this lab, we will create a Pyflink application that exports Kafka topic messages into a S3 bucket. The app enriches the records by adding a new column using a user defined function and writes them via the FileSystem SQL connector. This allows us to achieve a simpler architecture compared to the original lab where the records are sent into Amazon Kinesis Data Firehose, enriched by a separate Lambda function and written to a S3 bucket afterwards. While the records are being written to the S3 bucket, a Glue table will be created to query them on Amazon Athena.