featured.png

We'll continue the discussion of a Change Data Capture (CDC) solution with a schema registry and its deployment to AWS. All major resources are deployed in private subnets and VPN is used to access them in order to improve developer experience. The Apicurio registry is used as the schema registry service and it is deployed as an ECS service. In order for the connectors to have access to the registry, the Confluent Avro Converter is packaged together with the connector sources. The post ends with illustrating how schema evolution is managed by the schema registry.

featured.png

We'll discuss a Change Data Capture (CDC) architecture with a schema registry. As a starting point, a local development environment is set up using Docker Compose. The Debezium and Confluent S3 connectors are deployed with the Confluent Avro converter and the Apicurio registry is used as the schema registry service. A quick example is shown to illustrate how schema evolution can be managed by the schema registry.

featured.png

Change data capture (CDC) on Amazon MSK and ingesting data using Apache Hudi on Amazon EMR can be used to build an efficient data lake solution. In this post, we'll build a Hudi DeltaStramer app on Amazon EMR and use the resulting Hudi table with Athena and Quicksight to build a dashboard.

featured.png

Change data capture (CDC) on Amazon MSK and ingesting data using Apache Hudi on Amazon EMR can be used to build an efficient data lake solution. In this post, we'll build CDC with Amazon MSK and MSK Connect.

featured.png

Change data capture (CDC) on Amazon MSK and ingesting data using Apache Hudi on Amazon EMR can be used to build an efficient data lake solution. As a starting point, we’ll discuss the source database and CDC streaming infrastructure in the local environment.