featured.png

In Part 4, we developed Kafka producer and consumer applications using the kafka-python package without integrating schema registry. Later we discussed the benefits of schema registry when developing Kafka applications in Part 5. In this post, I'll demonstrate how to enhance the existing applications by integrating AWS Glue Schema Registry.

featured.png

In Part 3, we developed a data ingestion pipeline using Kafka Connect source and sink connectors without enabling schemas. Later we discussed the benefits of schema registry when developing Kafka applications in Part 5. In this post, I'll demonstrate how to enhance the existing data ingestion pipeline by integrating AWS Glue Schema Registry.

featured.png

The Glue Schema Registry supports features to manage and enforce schemas on data streaming applications using convenient integrations with Apache Kafka and other AWS managed services. In order to utilise those features, we need to use the client library. In this post, I'll illustrate how to build the client library after introducing how it works to integrate the Glue Schema Registry with Kafka producer and consumer apps.

featured.png

Glue Schema Registry provides a centralized repository for managing and validating schemas for topic message data. Its features can be utilized by many AWS services when building data streaming applications. In this post, we will discuss how to integrate Python Kafka producer and consumer apps in AWS Lambda with the Glue Schema Registry.