featured.png

This series updates a real time analytics app based on Amazon Kinesis from an AWS workshop. Data is ingested from multiple sources into a Kafka cluster instead and Flink (Pyflink) apps are used extensively for data ingesting and processing. As an introduction, this post compares the original architecture with the new architecture, and the app will be implemented in subsequent posts.

featured.png

As part of investigating how to utilize Kafka Connect effectively for AWS services integration, I demonstrated how to develop the Camel DynamoDB sink connector using Docker in Part 2. Fake order data was generated using the MSK Data Generator source connector, and the sink connector was configured to consume the topic messages to ingest them into a DynamoDB table. In this post, I will illustrate how to deploy the data ingestion applications using Amazon MSK and MSK Connect.

featured.png

The suite of Apache Camel Kafka connectors and the Kinesis Kafka connector from the AWS Labs can be effective for building data ingestion pipelines that integrate AWS services. In this post, I will illustrate how to develop the Camel DynamoDB sink connector using Docker. Fake order data will be generated using the MSK Data Generator source connector, and the sink connector will be configured to consume the topic messages to ingest them into a DynamoDB table.

featured.png

Kafka Connect is a tool for scalably and reliably streaming data between Apache Kafka and other systems. It can be used to build real-time data pipeline on AWS effectively. In this post, I will introduce available Kafka connectors mainly for AWS services integration. Also, developing and deploying some of them will be covered in later posts.

featured.png

Glue Schema Registry provides a centralized repository for managing and validating schemas for topic message data. Its features can be utilized by many AWS services when building data streaming applications. In this post, we will discuss how to integrate Python Kafka producer and consumer apps in AWS Lambda with the Glue Schema Registry.

featured.png

Streaming ingestion from Kafka (MSK) into Redshift and Athena can be much simpler as they now support direct integration. In part 2, we discuss an end-to-end streaming ingestion solution using EventBridge, Lambda, MSK and Athena. We also use AWS SAM integrated with Terraform for developing the producer Lambda function locally.

featured.png

Streaming ingestion from Kafka (MSK) into Redshift and Athena can be much simpler as they now support direct integration. In part 1, we discuss an end-to-end streaming ingestion solution using EventBridge, Lambda, MSK and Redshift. We also use AWS SAM integrated with Terraform for developing the producer Lambda function locally.

featured.png

The data build tool (dbt) is an effective data transformation tool and it supports key AWS analytics services - Redshift, Glue, EMR and Athena. In the last part of the dbt on AWS series, we discuss data transformation pipelines using dbt on Amazon Athena. Subsets of IMDb data are used as source and data models are developed in multiple layers according to the dbt best practices.

featured.png

The data build tool (dbt) is an effective data transformation tool and it supports key AWS analytics services - Redshift, Glue, EMR and Athena. In part 4 of the dbt on AWS series, we discuss data transformation pipelines using dbt on Amazon EMR on EKS. Subsets of IMDb data are used as source and data models are developed in multiple layers according to the dbt best practices.

featured.png

The data build tool (dbt) is an effective data transformation tool and it supports key AWS analytics services - Redshift, Glue, EMR and Athena. In part 3 of the dbt on AWS series, we discuss data transformation pipelines using dbt on Amazon EMR. Subsets of IMDb data are used as source and data models are developed in multiple layers according to the dbt best practices.